
1

 GOVERNMENT ARTS AND SCIENCE COLLEGE

(Affiliated to Manonmaniam Sundaranar University, Tirunelveli.)

KANAYAKUMARI – 629401.

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER-II

Academic Year 2022-2023

Prepared by

COMPUTER SCIENCE DEPARTMENT

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

2

UNIT

CONTENT

PAGE NO

I

PRINCIPLES OF OBJECT

ORINTED

PROGRAMMING

3

II

CLASSES AND OBJECTS

13

III

CONSTRUCTORS AND

DESTRUCTORS

24

IV

INHERITANCE

38

V

WORKING WITH FILES

43

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

3

UNIT I

A LOOK AT PROCEDURE ORIENTED PROGRAMMING

Procedure Oriented Programming (POP) vs Object Oriented Programming (OOP)

Procedure Oriented Programming :-

Procedure Oriented Programming (POP) approaches the problem as a sequence of things to be

done such as reading, calculating and printing. The primary focus is on Functions. Procedure

oriented programming basically consists of writing a set of instructions for the computer to

follow, and organizing these instructions into groups are known as functions.

Functions are defined to accomplish the tasks to be carried out. (Figure 1.1)

Fig. 1.1 Structure of procedure oriented programs

Characteristics of Procedure Oriented Programming:

• Large programs are divided into smaller programs known as functions.

• Most of the functions share global data.

• Employs top-down approach in program design.

• Importance is not given to data but to functions as well as sequence of actions to be

done.

• Does not have any access specifier.

• Data can move freely from function to function in the system.

• Adding new data and function is difficult.

• Most function uses Global data for sharing that can be accessed freely from function to

function.

• POP does not have any proper way for hiding data so it is less secure.

• Overloading is not possible.

• Examples: C, VB, FORTRAN, Pascal.

Function 5

Function 2

Function 3

Function 1

Main program

Function 4

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

4

Object-Oriented Problem-Solving Approach

It consists of identifying objects and how to use these objects in the correct sequence to solve the

problem. Object-oriented problem solving consist of designing objects that helps to solve a

specific problem. A message to an object causes it to perform its operations and solve its part of

the problem.

The object-oriented problem solving approach, in general, can be divided into following four

steps.

• Identify the problem

• Identify the objects needed for the solution

• Identify messages to be sent to the objects

• Create a sequence of messages to the objects that solve the problem.

OBJECT ORIENTED PROGRAMMING PARADIGM

Object oriented programming allows a decomposition of a problem into a number entities called

objects and then builds data and functions around these objects. The data of an object can be

accessed only by the functions associated with that object. However, functions of one object can

access the functions of other objects.

Sequential Operation

In a sequential operation the messages are sent to objects in sequential order. Control will not

return to the original sending object until all other messages have been completed. For example,

in the following diagram (Figure 1.2). Object A sends a message to Object B which in turn sends

a message to Object C. Object C has to return to Object B which then returns to Object A.

Control does not return to Object A, until all the other messages have completed.

Fig 1.2 Sequential operations in objects

In object-oriented programming, a method is a programmed procedure that is defined as part of a

class and included in any object of that class. A class (and thus an object) can have more than

one method.

Object C Object B Object A

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

5

Data is represented as properties of the object and behavior as methods. When an object receives

a message, it determines what method is being requested and passes control to the method. An

object has as many methods as it takes to perform its designed actions.

Method – A method (or message) in object-oriented programming (OOP) is a procedure

associated with an object. An object is made up of data and behavior, which form the interface

that an object presents to the outside world.

Methods that operate on specific objects are instance methods and messages that invoke instance

methods are called instance message. Methods that operate on specific classes are class methods.

Desirable qualities of an object are,

Modularity: The operations / methods should be defined separately for each module. One of the

objects‟ features can be used by other object as a reusable component.

Information Hiding: The data about one object should exclusively belong to that object, which

enables the individual modules focuses on specific functionality.

Re-usability of code: An object of one class should have the same functionality that of another.

Same code could be usable by all objects of one class.

Fig 1.3 Object representation with data and functions

Object A

Object B Object C

Functions Functions

Data Data

Functions

Data

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

6

The object-oriented programming can be defined as an approach that modularizes programs by

creating partitioned memory area for both data and functions (Figure 1.3). The modules can be

used as templates for creating other modules if needed. Thus, an object is considered to be a

partitioned area of computer memory that stores data and set of operations that can access that

data. Since the memory partitions are independent, the objects can be used in a variety of different

programs without modifications.

Some characteristics of Object-Oriented Programming are: -

Programs are modularized objects.

• Functions that operate on the data are tied together in the data structure.

• Data is hidden and cannot be accessed by external functions.

• Objects may communicate with each other through member functions.

• New data and functions can be easily added whenever necessary.

• Follows bottom-up approach in program design.

• Has access specifiers named Public, Private, Protected, etc.

• Provides an easy way to add new data and function Data Hiding provides more security.

• Overloading is possible in the form of Function Overloading and Operator Overloading.

• Programs organized around objects, grouped in classes

• Focus on data with methods to operate upon objects data

• Interaction between objects through functions

• Reusability of design through creation of new classes by adding features to existing

classes

• Examples: C++, Java, Smalltalk, Delphi, C#, Perl, Python .NET, PHP.

BASIC CONCEPTS OF OBJECT-ORIENTED PROGRAMMING

The objected oriented paradigm is not just a programming style but also a design method for

building systems. Defining an object in building a system is more important. Object

In the class-based object-oriented programming paradigm, "object" refers to a particular instance

of a class where the object can be a combination of variables, functions, and data structures.

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

7

Object contains data and the code to manipulate that data.

• An object can be considered a "thing" that can perform a set of activities that defines the

object's behaviour or characteristics.

• The object's interface consists of a set of commands, each command performing a specific

action.

• An object asks another object to perform an action by sending it a message. The

requesting (sending) object is referred to as sender and the receiving object is referred to

as receiver.

• Control is given to the receiving object until it completes the command; control then

returns to the sending object.

• A message can also contain information the sending objects needs to pass to the

reviewing object, called the argument in the message.

• A receiving object always returns a value back to the sending object. This returned value

may or may not be useful to the sending object.

Classes

• Classes are user defined data type.

• Object can be made as a user defined data type with the support of a class.

• Objects are the variables of the data type class.

• A created class can contain any number of objects.

• A class is a collection of objects of similar type.

• Each object is connected with the class with which it was created. Syntax for creating

an object from class is

Example: Car, Bus, Motor bike are members of the class Vehicle. If Vehicle is defined as a class,

then objects can be created as follows:

Vehicle Car

Object oriented languages allow the programmer to specify self-contained units and specify them

as objects which are made up of data and the methods or operations which can be performed on

the object. A computer language is object-oriented if they support the following properties:

Encapsulation

• Encapsulation is the process of hiding data of a class from objects.

Classname Objectname

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

8

• Encapsulation bundles the actions and attributes together as a single unit.

• The advantage of encapsulation is that the implementation is not accessible to the client.

• The user knows only the functionality of encapsulated unit and information to be supplied

to get the result.

• Encapsulation supports information hiding by making use of the three access specifiers

of a class.

Data Hiding / Information hiding

• The process of insulating an objects data is called data hiding or information hiding.

• Isolates the end users from the requirement of intimating knowledge of the design for the

usage of a module.

• Information hiding access specifiers are,

o Public: If a class member is public, it can be used anywhere without the access

restrictions.

o Private: if a class member is private, it can be used only by the members and friends

of class.

o Protected: if a class member is protected, it can be used only by the members and

friends of class and the members and friends of classes derived from class.

Inheritance

• Inheritance is the mechanism that permits new classes to be created out of existing classes

by extending and refining its capabilities.

• Inheritance defines an “is – a” relationship.

• The existing classes are called the base classes/parent classes/super-classes, and the new

classes are called the derived classes/child classes/subclasses.

• The subclass can inherit or derive the attributes and methods of the super-class(es)

provided that the super-class allows so.

• Besides, the subclass may add its own attributes and methods and may modify any of the

super-class methods.

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

9

Types of Inheritance:

o Single Inheritance: A subclass derives from a single super-class.

o Multiple In

o

one super-classes.

o Multilevel Inheritance: A subclass derives from a super-class which in turn is

derived from another class and so on.

o Hierarchical Inheritance: A class has a number of subclasses each of which may

have subsequent subclasses, continuing for a number of levels, so as to form a tree

structure.

X

X1 X2 X3

X

Y

heritance: A subclass derives from more than

X Y

Z

X

Y

Z

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

10

 Hybrid Inheritance: A combination of multiple and multilevel inheritance so as

to form a lattice structure.

Exception Handling

Exception handling is a feature of OOP, to handle unresolved exceptions or errors produced at

runtime.

Polymorphism

• Polymorphism is originally a Greek word that means the ability to take multiple forms.

• It implies using operations in different ways, depending upon the instance they are

operating upon.

• Polymorphism allows objects with different internal structures to have a common external

interface.

Message Passing

• Objects in a system may communicate with each other using message passing.

• The features of message passing are:

o Message passing between two objects is generally unidirectional.

o Message passing enables all interactions between objects.

o Message passing essentially involves invoking class methods.

BENEFITS OF OBJECT ORIENTED PROGRAMMING

The benefits of using the object model are:

• It helps in faster development of software.

• Inheritance eliminates redundant code and extends the use of existing classes which is not

possible in procedure oriented approach.

• Building programs from the standard working modules that communicate with one

another thereby saving of development time and higher productivity.

• Information /Data hiding builds a secure system.

X1

X2 X3

X4

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

11

• Multiple instances of object can co-exist without any interference.

• Partitioning the project work based on objects.

• Can be easily upgraded from small to large systems.

• Message passing techniques makes the interface descriptions with external systems easier

and simpler.

• It is easy to maintain.

• It enables reuse of objects, designs, and functions.

• It reduces development risks, particularly in integration of complex systems.

APPLICATIONS OF OOP

• Real time Systems - A real time system is a system that give output at given instant and

its parameters changes dynamically. Code changing is very easy in OOP system

and it leads toward dynamic behaviour of OOP codes making it more suitable to real time

system.

• Simulation and Modelling - in the area of System modelling where criteria for OOP

approach is used. Representing a system is very easy in OOP approach

• Hypertext And Hypermedia - Hypertext and hypermedia is another area where OOP

approach is used. Its ease of using OOP codes that makes it suitable for various media

approaches.

• Decision support system - Decision support system is an advance and complex Real time

system where OOPS can be applied.

• CAM/CAE/CAD System - Computer has wide use of OOP approach due to time saving in

writing OOP codes and dynamic behaviour of OOP codes.

• Office Automation System - Embedded systems make it easy to use OOP for automated

system.

• AI and expert system - It is mixed system having both hypermedia and real time system.

• Real-time Business System- OOP has gained importance in the area of on-line business

via Internet.

The various differences between the procedure-oriented programming and Object-Oriented

programming are listed in Table 1.1.

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

12

Table 1.1 Difference between Procedure Oriented programming: and OOP

POP OOP

follows a top down approach follows a bottom up approach

Importance is given to the sequence of things to

be done

Importance is given to the data

larger programs are divided into functions larger programs are divided into objects

most functions share global data. mostly the data is private

importance to algorithm rather than data importance to data rather than algorithm

Example: Pascal and C Example: C++ and Java

STRUCTURE OF C++ PROGRAM

C++ program has four important sections namely,

- Header files to be include

- Class declarations

- Member function definitions

- Main function

The sections can be placed as different code files, which can be compiled together or

independently.

Include Header files

SERVER

Class declarations

Member function

definitions

Main function program CLIENT

Fig 2.1 Structure of C++ program

C++ structure is organized as illustrated in the Figure 2.1. Since class declarations and

member function definition are separated, it helps the programmer to separate the abstract

specification of the interface from the implementation details.

The Main function includes all the required files in all the sections for execution. The class

definitions and the member functions serve as the server to provide services to the client i.e

the main program. Public Interface of the class is used for communication between client and

server elements of the program.

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

13

UNIT-II

SPECIFYING A CLASS

Class can be considered as a blueprint or a template. A class binds the data and its

associated functions. Specification of a class has two parts namely,

o class declaration – describes the type and scope its members.

o class function definition – describes the implementation of class function.

• Class members are the variables and functions declared inside the class. The keywords

private and public are called as visibility labels.

• Variables inside the class are called as data members and the functions are known as

member functions.

Syntax of class declaration

class class_name

{ private :

variable declarations; function declarations; public :

variable declarations; function declarations; };

• Objects are instances of class, which holds the data variables declared in class and the

member functions work on these class objects.

• Classes contain data members and member functions, and the access of these data

members and variable depends on the access specifiers.

• Class's member functions can be defined inside the class definition or outside the class

definition.

• By default, a class has private access control.

• No storage is assigned during a class definition.

• Class name must start with an uppercase letter.

Access Control in Classes

• Access specifiers are used to set boundaries for availability of members of class.

• Access specifiers in the program, are followed by a colon.

• Either one, two or all 3 specifiers can be used in the same class to set different boundaries

for different class members.

• Access specifiers in C++ class are public, private and protected

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

14

• Public - All the class members declared under public will be available to everyone. The

data members and member functions declared public can be accessed by other classes too.

• Private - No one can access the class members declared private outside that class. If tried

to access the private member, a compile time error will occur. By default, class variables

and member functions are private.

• Protected - Class member outside the class are inaccessible but they can be accessed by

any subclass of that class. If class A is inherited by class B, then class B which is subclass

of class A can access.

class PubAccess

{ public: // public access specifier int

a; // Data Member Declaration

void fun1(); // Member Function

declaration

};

class PriAccess

{ private: // private access specifier int

a; // Data Member Declaration

void func2(); // Member Function

declaration

};

class ProAccess

{ protected: // protected access specifier

int a; // Data Member Declaration

void show(); // Member Function

declaration

};

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

15

Creating objects: Once class has been defined any number of objects belonging to that class

can be created. Objects are the variable of the type class. A class is a collection of objects of

similar type. The declaration of object allocates needed memory space for the object. For

example the following class has three objects namely obj1, obj 2 and obj 3.

DEFINING MEMBER FUNCTIONS

• Class is a user defined data type, that holds its own data members and member functions,

which can be accessed and used by creating instance of that class.

• The variables inside class definition are called as data members and the functions are

called member functions.

• Member functions are the functions, which have their declaration inside the class

definition and works on the data members of the class. The definition of member

functions can be inside or outside the definition of class.

• If the member function is defined inside the class definition it can be defined directly, but

if it’s defined outside the class, then we have to use the scope resolution :: operator along

with class name along with function name.

Example:

class BoxVolume

{

public:

int a;

int getVolume(); // Declaring

function getVolume with no

argument and return type int.

};

class cname

{

…

…

}obj1, obj2, obj3;

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

16

If function is defined inside class, then declaring it first is not needed. The function can

directly be defined.

But if the member function is defined outside the class definition, then the function must be

declared inside class definition and then define it outside.

Types of Member Functions

Following are different types of Member functions,

o Simple functions

o Static functions

o Const functions

o Inline functions

o Friend functions

Simple Member functions

• These are the basic member function, which do not have any special keyword prefix.

return a*a*a;

//returns volume of cube

}

};

class BoxVolume

{ public: int a; int getVolume()

{

class BoxVolume

{ public: int a; int

getVolume();

}

int BoxVolume :: getVolume() // defined

outside class definition

{

return a*a*a;

}

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

17

• The syntax is as shown below:

Static Member functions

• Static holds its position.

• Static is a keyword which can be used with data members as well as the member

functions.

• A function is made static by using static keyword with function name. These

functions work for the entire class rather than for a particular object.

Example:

• It can be called using the object and the direct member access . operator.

• Calling using class name and scope resolution :: operator is also allowed.

• These functions cannot access ordinary data members and member functions, but only

static data members and static member functions.

function body;

}

return_type

functionName(parameter_list)

{

class A

{

public:

static void f() { };

};

int main()

{

A::f(); // calling member function directly with

class name

}

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

18

Const Member functions

• Const keyword makes variables constant, whose values remains constant and cannot

be changed.

• When used with member function, the member functions can never modify the object

or its related data members.

• Basic Syntax of const Member Function is

Inline functions

All the member functions defined inside the class definition are by default declared as

Inline.

Friend functions

• Friend functions can have a private access to non-class functions.

• A global function or a member function of other class can be declared as friend.

• Friend functions are actually not class member function.

• Friend functions can access private data members by creating object of the class.

• When a class is made as a friend, all its member functions automatically become friend

functions.

Example:

class MyFriend

{ int i;

public:

friend void func(); // Global function as friend

}; void

func()

{

MyFriend wf; mf.i=100; // Access to

private data member cout << mf.i;

}; int

main()

{ func(); // Called

directly

}

void func() const { }

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

19

Object 1

STATIC DATA MEMBERS AND STATIC MEMBERS FUNCTIONS

Characteristics of Static data member in class

• Static member variable is initialized to zero when the first object of its class is

created.

• Once the definition for static data member is made, user cannot redefine it.

• Static data members of class are the members that are shared by all the objects of that

class.(Fig. 2.2)

Fig. 2.2. Sharing of static data member,

It is visible only within the class.

• Static data member has a single piece of storage.

• Static member variables (data members) are not initialized using constructor, because

these are not dependent on object initialization.

• Used to maintain values common to the entire class.

• It must be initialized explicitly, always outside the class. If not initialized, a Link error

will occur

class A

{ static int

i;

public:A()

{ };

}; int

A::i=1; int

main()

{

A obj;

cout << obj.i; // prints value of i

}

Static variable

Object 3 Object 2

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

20

Static Member Functions

Characteristics of static member function are,

• Can have access only to other static members declared in the same class.

• These functions or variables cannot access ordinary data members and member

functions.

• These functions work for the class as a whole rather than for a particular object of a

class.

• A static member function can be called using an object and the direct member access.

operator.

• It can be called by itself, using class name and scope resolution: operator. Syntax –

class_name :: function_name

Example:

OBJECT AS FUNCTION ARGUMENTS

An object can be used as a function argument using the following two methods:

• Pass by value: Passing a copy of the entire object to the function. Changes

made to the object inside the function do not affect the object used to call the

function.

• Pass by reference: Transferring the address of the object alone to the function.

The called function works directly on the actual called object. Changes made

to the object inside the function affects the object used to call the function.

class A

{

public:

static void f() { };

};

int main()

{

A::f(); // calling member function directly with class

name

}

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

21

Characteristics:

• Every call to a member function is associated with a particular object.

• Using the member names alone the function has direct access to all the

members, whether private or public, of that object.

• It also has indirect access, using the object name and the member name,

connected with the dot operator to other objects of the same class that are

passed as arguments.

• An object can also be passed as an argument to a non-member function. The

non-member function can have access to the public member functions only

through that objects. These non-member functions cannot have access to the

private data members.

• Whenever an object of a class is passed to a member function of the same

class, its data members can be accessed inside the function using the object

name and the dot operator. However, the data members of the calling object

can be directly accessed inside the function without using the object name and

the dot operator.

FRIENDLY FUNCTIONS

In C++, a non-member function cannot have an access to the private data of a class.

Normally, a function that is defined outside of a class cannot access such information.

A friend function of a given class is allowed access to private and protected data in

that class.

• A friend function of a class is defined outside that class' scope but it has the

right to access all private and protected members of the class.

• Even though the prototypes for friend functions appear in the class definition,

friends are not member functions.

• The functions that are declared with the keyword friend are known as friend

functions.

• A friend can be one of the following in case the entire class and all of its

members are friends.

o a function

o a function template

o a member function

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

22

o a class

o a class template

• To declare a function as a friend of a class, precede the function prototype in

the class definition with keyword friend as follows:

• The declaration of friend function should be made inside the body of class

(can be anywhere inside class either in private or public section) starting with

keyword friend.

• It can be declared either in the public or private part of the class.

• A function can be declared as a friend in any number of classes.

• If a function is defined as a friend function then, the private and protected data

of class can be accessed from that function. The complier knows a given

function is a friend function by its keyword friend.

• A friend function has full access rights to the private members of the class.

• A class can be made a friend of another class using keyword friend. For

example:

........

class MainA

{ friend class SubB; // class B is a friend

class

.....

};

class SubB

{.....

};

class class_name

{

......

friend return_type

function_name(arguments);

......

};

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

23

• When a class is made a friend class, all the member functions of that class

becomes friend function.

• A friend function can be invoked like a normal function without the help of

any object.

• It is not in the scope of the class to which it has been declared as friend and

hence, it cannot be called using the object of that class.

• A member function of one class can be friend function of another class.

• A friend function can be called by reference.

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

24

Constructors

UNIT III

CONSTRUCTORS AND DESTRUCTORS

• Constructors are class functions that perform initialization of every object.

• Constructors initialize values to object members after storage is allocated to the

object.

• The Compiler calls the Constructor whenever an object is created.

• The name of constructor will be same as the name of the class Example:

• Constructors will not have a return type.

• Constructors can be defined either inside the class definition or outside class

definition using class name and scope resolution :: operator.

Types of Constructors

The three types of Constructors are:

• Default Constructor

• Parameterized Constructor

• Copy Constructor

class X

{ int i;

public:

X(); //Constructor

};

class X

{ int i;

public:

X(); //Constructor declared

};

X::X() // Constructor definition

{

i=10;

}

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

25

Default Constructor

• Default constructor does not take any argument.

• It has no parameter.

Syntax:

Example:

After creating the object, the constructor is called which initializes its data members. A

default constructor is used for initialization of object members

Even if a constructor is defined explicitly, the compiler will provide a default constructor

implicitly.

class Cube

{

int side;

};

int main()

{

Cube c;

cout << c.side;

}

Output : 0

class_name ()

{

Constructor Definition

}

class Cube

{

public:

Cube()

{

side=10;

}

int side;

};

int main()

{

Cube c;

cout << c.side;

}

Output : 10

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

26

In the above example, the default constructor provided by the compiler is called which has

initialized the object data members to default value of 0.

Characteristics of Constructors

• Called automatically when the objects are created.

• All objects of the class having a constructor are initialized before using.

• Declared in the public section for availability to all the functions.

• Default and copy constructors are generated by the compiler wherever required.

• Generated constructors are public.

• Can have default arguments like other C++ functions.

• A constructor can call member functions of its class.

• Return type cannot be specified for constructors.

• Constructors cannot be inherited, but a derived class can call the base class

constructor.

• Constructors cannot be static.

• An object of a class with a constructor cannot be used as a member of a union.

PARAMETERIZED CONSTRUCTORS

• The constructors possess parameters.

• Different values to data members of different objects can be provided, by passing the

appropriate values as argument.

Example:

class Cube

{ int side; public: Cube(int x)

{

side=x;

}

};

int main()

{

Cube cb1(100);

Cube cb2(200);

Cube cb3(300);

cout << cb1.side;

cout << cb2.side;

cout << cb3.side;

}OUTPUT : 100 200 300

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

27

In the above example, the parameterized constructor has initialized three objects cb1, cb2 and

cb3 with user defined values as 100, 200 and 300 respectively.

MULTIPLE CONSTRUCTORS IN CLASS

• A class can contain more than one Constructor. This is called as Constructor

Overloading.

• All constructors are defined with the same name as that of the class they belong to.

• All constructors can contain different number of arguments.

• Based on the number of arguments, the compiler executes the appropriate constructor.

Example:

In the above example the compiler decides which constructor to be called based on the

number of arguments in the object. When A is created, the constructor with three arguments

is called since the declaration of the object is followed with three arguments. Similarly, for

object A and object C the constructor with two arguments and one argument is called

respectively.

DESTRUCTORS

• Destructor is a class function that destroys the object as soon as the scope of object

ends.

• The destructor is called automatically by the compiler when the object goes out of

scope.

• In the syntax of destructor, the class name is used for the name of destructor; with a

tilde ~ sign as prefix to it.

• Destructors will never have any arguments.

// constructor

declaration cons(int n, float m,

char p); cons(int n, float m);

cons();

// object declaration

cons A(10,20,25,‟S‟);

cons B(100, 1.2); cons

C;

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

28

Characteristics

• It does not take any parameter nor does it return any value.

• Overloading a destructor is not possible.

• A class can have only one destructor. A destructor can be defined outside the class.

• Called automatically when the objects are destroyed.

• Destructor functions follow the usual access rules as other member functions.

• De-initializes each object before the object goes out of scope.

• Cannot be inherited.

• Address of a destructor cannot be taken.

• A destructor can call member functions of its class.

• An object of a class having a destructor cannot be a member of a union.

Example: Calling Constructor and Destructor

class X

{

X()

{

cout << "Called Constructor";

}

~X()

{

cout << "Called Destructor";

}

};

int main()

{

X obj1; // Called Constructor

int i=1; if(i)

{

X obj2; // Called Constructor

} // Destructor Called for obj2

} // Destructor called for obj1

class X

{

~X();

};

public:

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

29

OPERATOR OVERLOADING – DEFINING OPERATOR OVERLOADING

• Operator Overloading provides new function definitions to the normal C++ operators

like +, -, *, ++, --, +=,-=, <, >. The mechanism of providing such an additional

definition to an operator is known as operator overloading in C++.

• The overloaded function definitions are for user defined datatypes.

• Existing operators alone can be overloaded.

• For example, the functionality of „+‟ operator can be extended to strings through

operator overloading instead of using strcat() function.

Syntax:

Steps for creating overloaded operators:

a. Create a class that defines the data type for overloading operation.

b. Declare the operator function in the public part of the class

c. Define the operator function for the needed operator.

Operator overloading can be done by implementing a function which can be:

• Member Function - Operator overloading function can be a member function if the

Left operand is an Object of that class.

• Non-Member Function - if the Left operand is different, then Operator overloading

function must be a non-member function

• Friend Function - Operator overloading function can be made friend function if it

needs access to the private and protected members of class.

The Syntax of declaration of an Operator function is as follows:

Example – declaring an Operator function for „=‟ is, Operator =

Returntype classname :: operator

operatorsymbol(argument list)

{

// function definition

}

operator Operator_name

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

30

OVERLOADING UNARY OPERATORS

Unary operators act on only one operand where an operand is simply a variable acted on by

an operator. There is no restriction on the return types of the unary operators. The unary

operators that can be overloaded are the following:

 ! (logical NOT)

 & (address-of)

 ~ (one's complement)

 * (pointer dereference)

 + (unary plus)

 - (unary negation)

 ++ (increment)

 -- (decrement)

• To declare a unary operator function as a non-static member, declaration syntax is of

form:

where ret-type - the return type, op - one of the

operators.

• To declare a unary operator function as a global function, declaration syntax is of form:

•

where arg is an argument of class type on which to operate.

• The keyword operator is used to overload the ++ operator. Example:

The return type void comes first, followed by the keyword operator, followed by the operator

itself (++), and finally the argument list enclosed in parentheses. This declaration syntax

invokes the compiler to call this member function whenever the ++ operator is encountered.

ret_type operatorop()

ret_type operatorop(arg)

void operator ++ ()

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

31

++c1; // increment count

 C1 // object

…

…

count //function

…

…

void operator++() // no arguments

{

++count;

}

Whenever an unary operator is used, it works with one operand. Therefore with the user

defined data types, the operand becomes the caller and hence no arguments are required.

Postfix form

• When specifying an overloaded operator for the postfix form of the increment or

decrement operator, the additional argument must be of type int.

• Specifying any other type generates an error.

• The argument of type int that denotes the postfix form of the increment or decrement

operator is not commonly used to pass arguments. It usually contains the value 0. The

operator functions namely operator=, operator [], operator () and operator? are

nonstatic member functions.

Some examples of declarations of operator functions are given below:

OVERLOADING BINARY OPERATORS

• A Binary Operator can be defined either a member function taking one argument.

• An operator function should be either a member or take at least one class object

argument.

• An operator function, which needs to accept a basic type as its first argument, cannot

be a member function.

class X

{

X operator ++ (int);//Postfix increment

X operator ++ (); //Prefix increment

}

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

32

• All function work with two operands. The first (Rational) is the operator overloaded

function caller and the second (object) is the passed argument.

• The following is the list of binary operators that can be overloaded:

Operator

Name Operator Name

,

Comma

*
Multiplication

!= Inequality *= Multiplication/assignment

% Modulus + Addition

%= Modulus/assignment += Addition/assignment

& Bitwise AND – Subtraction

&& Logical AND –= Subtraction/assignment

&= Bitwise AND/assignment –> Member selection

/ Division –>* Pointer-to-member

/= Division/assignment ^ Exclusive OR

< Less than ^= Exclusive OR/assignment

<< Left shift | Bitwise inclusive OR

<<= Left shift/assignment |= Bitwise inclusive

<= Less than or equal to || Logical OR

= Assignment >> Right shift

== Equality >>= Right shift/assignment

> Greater than >= Greater than or equal to

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

33

• To declare a binary operator function as a nonstatic member, its declaration syntax is

of the form:

where ret-type is the return type, op is one of the operators listed in the table, and arg is an

argument of any type.

• To declare a binary operator function as a global function, its declaration syntax is of

the form:

where arg1 and arg2 are arguments. At least one of the arguments must be of class

type.

• There is no restriction on the return types of the binary operators.

• Normally, user-defined binary operators return either a class type or a reference to a

class type.

OVERLOADING BINARY OPERATORS USING FRIENDS

• Friend function can be used in the place of member functions for overloading a binary

operator.

• A friend function is in need of two arguments to be explicitly passed to it.

• In situations where we need to use two different types of operands for a binary operator

friend function is more useful than member function. One operand can be an object and

another can be a built-in data type

Overloading the operators >> and << using friend function

In the statement cin >> a; the right shift operator >> takes two operands, one is an object of

istream and another is an integer data type. If implemented for user defined type, then the

code has to be as follows:

s is an object of class Number and cin is an object of istream. In this statement left hand

side operand is not an object of user defined class Number. So the operator >> cannot be

Number s; cin>>

s;

ret_type operatorop(arg1,arg2)

ret_type operatorop(arg)

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

34

overloaded using the member function of class Number. It should be implemented as friend

function.

RULES FOR OPERATOR OVERLOADING

• No new operators can be created, only existing operators can be overloaded.

• The overloaded operator must have at least one operand that is of user defined type.

• Precedence and Associativity of an operator cannot be changed.

• Change the basic meaning of an operator is not possible. For example, redefining a

plus(+) operator to subtract one value from the other is not possible

• Overloaded operators follow the syntax rules of the original operators. They cannot be

overridden.

• “friend” functions cannot be used to overload certain operators like

o assignment operator „ = ‟

o function call operator „()‟

o subscripting operator „[]‟

o class member access operator „->‟

• Member function can be used to overload the above operators.

• The following operators cannot be overloaded:

o scope operator - ::

o member selector - .

o member pointer selector - *

o ternary operator - ?:

• Numbers of Operands cannot be changed. That is, Unary operator remains unary,

binary remains binary etc.

• Unary operators, overloaded by a member function, take no explicit arguments and

return no explicit values.

• Unary operators, overloaded by a friend function, take one reference argument - the

object of the relevant class.

• Binary operators overloaded through a member function take one explicit argument

and through a friend function it takes two explicit arguments.

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

35

• Binary arithmetic operators such as +,-,* and / must explicitly return a value. They

must not attempt to change their own arguments.

• All overloaded operators except assignment (operator=) are inherited by derived

classes.

TYPE CONVERSION

Implicit conversions are automatically performed when a value is copied to a compatible

type.

standard conversion - Standard conversions affect fundamental data types, and allow the

conversions between numerical types

- short to int,

- int to float

- double to int

- to or from bool etc., For example:

In the above example, the value of „aa is promoted from short to int without the need of any

explicit operator.

promotion - Converting from a data type with small size to another larger data type

guarantees the exact same value in the destination type. Example:

- short to int

- float to double

• Converting from a data type with large size to another smaller data type does not

guarantee the exact same value in the destination type. Example:

- float to int : the value is truncated by removing the decimal part.

• If a negative integer value is converted to an unsigned type, the resulting value

corresponds to its 2's complement bitwise representation

• The conversions from/to boolean consider false equivalent to zero (for numeric types) and

to null pointer (for pointer types); true is equivalent to all other values and is converted to

the equivalent of 1.

short a=100;

int b;

b=a;

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

36

• For non-fundamental type conversions like arrays and functions it implicitly converts to

pointers. Pointers normally allow the following conversions:

- Null pointers : converted to pointers of any type - Pointers to any type:

converted to void pointers.

- Pointer upcast: pointers to a derived class: converted to a pointer of an

accessible and unambiguous base class.

Implicit conversions with classes

Implicit conversions can be controlled by the following member functions:

• Single-argument constructors: allow implicit conversion from a particular type to

initialize an object.

• Assignment operator: allow implicit conversion from a particular type on

assignments.

• Type-cast operator: allow implicit conversion to a particular type.

Three types of situations might arise for data conversion between different types :

(i) Conversion from basic type to class type.

(ii) Conversion from class type to basic type.

(iii) Conversion from one class type to another class type.

(i) Basic Type to Class Type

This type of conversion is very easy. If a class object has been used as the left hand operand

of = operator, the type conversion can also be done by using an overloaded = operator in

C++.

(ii) Class Type to Basic Type

Define an overloaded casting operator for converting a class type to a basic type. The syntax

of the conversion function is as follows:

• The function converts a class type data to typename. For example

o The operator float () converts a class type to type float

o The operator int () converts a class type object to type int.

operator typename()

{

.......

....... //statements

}

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

37

• When a class type to a basic type conversion is required, the compiler will

call the casting operator function for performing the task.

• The following conditions should be satisfied by the casting operator function

o It must not have any argument

o It must be a class member

o It must not specify a return type.

(i) One Class Type to Another Class Type

• During converting one class type data A to another class type data B, A is referred to as

the Source class and b as Destination class.

• The source class performs the conversion and result is given to the object of destination

class.

• The argument of the source class is passed to the destination class for the purpose of

conversion.

• The conversion constructor must be kept in the destination class.

• The conversion can be performed in two ways :

(a) Using a constructor.

(b) Using a conversion function.

* * *

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

38

UNIT IV

INHERITANCE: DEFINING DERIVED CLASSES

Inheritance is the process by which objects of one class acquires the properties of objects of

another classes. It supports the concept of hierarchical classification. It has the capability of

one class to acquire properties and characteristics from another class.

• The class whose properties are inherited by other class is called the Parent or Base or

Super class.

• The class which inherits properties of other class is called Child or Derived or Sub

class.

• When an existing class is inherited, all its methods and fields become available in the

new class, making the code reusable.

• All members of a class except Private can be inherited.

• Additional features can be added to an existing class without modifying it making it

possible by deriving a new class from the existing one. The new class will have the

combined feature of both the classes.

Basic Syntax of Inheritance

• Before defining a subclass, the super class must be defined or must be declared before

the subclass declaration.

• The public, private or protected Access Mode is used to specify, the mode in which

the properties of superclass will be inherited into subclass.

Example of Inheritance

Vehicle

Car

class Subclass_name : access_mode Superclass_name

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

39

Types of Inheritance

In C++, we have 5 different types of Inheritance. Namely,

• Single Inheritance

• Multiple Inheritance

• Hierarchical Inheritance

• Multilevel Inheritance

• Hybrid Inheritance (also known as Virtual Inheritance)

SINGLE INHERITANCE

One derived class inherits from only one base class. It is the most simplest form of

Inheritance.

Single Inheritance can inherit properties by the following three access methods:

- Private Inheritance

- Public Inheritance

- Protected Inheritance

Sub Class

Base Class

class Vehicle {

public: int

wheels = 4;

};

class Car : public

Vehicle { public: int

speed = 100;

};

int main()

{

Car c;

cout << c.wheels;

cout << c.speed;

}

Output :

4 100

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

40

Private Inheritance

Consider the following classes:

• In the above class definition, all the public parts and all the protected parts of class A

become private members/parts of the derived class in B.

• No private member of class A can be accessed by class B.

• A public function can be accessed by any object, but private function can be used only

within the class hierarchy.

Public Inheritance

Consider the following classes:

In the above class definition, all the public and protected parts of class A become public and

protected class in class B respectively.

class A

{

......

…

….

};

class B: private A

{

…

…

…

}

class A

{

........

……

};

class B: public A

{

…

…

};

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

41

Protected Inheritance

Consider the following classes:

Now, all the public and protected parts of class A become protected in class E.

No private member of class A can be accessed by class E.

MULTILEVEL INHERITANCE

In this type of inheritance the derived class inherits from a class, which in turn inherits from

some other class. The Super class for one, is sub class for the other.

From the base Class A, Class B is derived. Class B serves as the Base class for Class C. In

this case, Class B is called as the Intermediate Base Class which provides a link for the

inheritance between Class A and Class C Multilevel Inheritance declaration:

class A

{ … };

class B: public A

{ …

… };

class C: public B

{ …

… };

class A

{

........

……

};

class B: protected A

{

…

…

};

Base Class (A)

Intermediate class (B)

Derived Cla ss (C)

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

42

The chain A B C is called as the inheritance path. This process of creating derived class

can be extended to any number of levels. In multilevel inheritance the constructors are

executed in the order of inheritance.

MULTIPLE INHERITANCE

In this type, a Single Class can inherit the attributes from many Classes. It allows the user to

combine the features of existing classes from which it was inherited. The derived class may

contain the features of all the parent classes.

The class declaration is as follows:

The access_mode can be either public or private. The parent classes are separated by comma.

In Multiple inheritance, the base classes are constructed in the order its declaration in the

derived class.

Advantages of Inheritance

• Code Reusability

• Method Overriding

Use of Virtual Keyword

Class P1 Class P2 Class P3

Class C

class C: access_mode P1, access_mode

P2…

{ … };

class P1

{ …

… };

class P2

{ …

… };

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

43

Write Data

Data Input

Processing

Data Output

UNIT V

WORKING WITH FILES

The data is stored in devices like hard disk using the concept of files. A file is a collection of

related data stored in a particular area on a disk. Programs can be designed to perform the

read and write operations on these files. (Figure 5.2)

I/O Stream: The I/O system of C++ handles file operations. It uses file streams as an

interface between the programs and files. The stream that supplies data to the program is

called input stream and the one that receives data from the program is called output stream.

Input stream:

• Input stream extracts data from the file.

• The input operation involves the creation of an input stream and linking it with the

program and input file.

Output stream:

• Output stream inserts data to the file.

• The output operation involves establishing an output stream with the necessary links

with the program and output file.

I/P stream

O/P stream

Fig. 5.2 I/O stream & file operations

Disk Files

Read Data

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

44

CLASSES FOR FILE STREAM OPERATORS

The I/O system of C++ contains a set of classes that defines the file handling methods. These

include ifstream, ofstream and fstream. These classes are derived from fstreambase and

from the corresponding iostream class. These classes are declared in fstream and therefore

this file is included in any program that uses files. The various stream classes for console I/O

operations are shown in Figure 5.3.

Fig 5.3 file stream classes

The details of file stream classes are described in Table 5.1.

Table 5.1 File stream classes and its functions

ios

-

-

Provides basic facilities for I/O classes

Contains pointer to a buffer object:streambuf

- Declares constants and functions for handling I/O operations.

istream

-

-

Declares input functions like get(), read().

Contains overloaded extraction operator >>

- Inherits the properties of ios

ostream

-

-

Declares input functions like put(), write().

Contains overloaded extraction operator >>

- Inherits the properties of ios

ifstream

-

-

-

Provides input operations.

Contains open() with default input mode.

Inherits the functions

get(),getline(),read(),seekg(),tellg() functions from

istream.

ofstream

-

-

-

Provides output operations.

Contains open() with default output mode.

ifstream

istream

iostream ofstream

ostream

fstream

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

45

 Inherits put(),seekp(),tellp() and write() functions from

ostream.

fstream

-

-

Provides support for simultaneous input and

output operations.

Contains open with default input mode.

- Inherits all the functions from istream and ostream classes

through iostream.

Streambuf
-

-

Provides an interface to devices through buffers

Acts as a base for filebuf class

iostream

- Inherits the properties of ios, istream and ostream through

multiple inheritance

- Contains all I/O functions

OPENING AND CLOSING A FILE

For using a disk file the following things are necessary:

• Suitable file name

• Data type and structure

• Purpose

• Opening Method

The filename is a string of characters that makeup a valid filename for the operating system.

It contains two parts

- primary name

- period (optional) with extension.

Examples: abc.txt, myfile.doc

For opening a file initially a file stream is created and then it is linked to the filename. A file

stream can be defined using the classes ifstream, ofstream and fstream that are in the fstream

header file. Table 5.2 describe the contents of file classes.

Table 5.2 contents of file stream classes.

filebuf - Purpose is to set the file buffers to read and write.

- Has close() and open() as members.

fstreambase - Provides operations common to file streams.

- Serves as a base for fstream, ifstream and ofstream class.

- Contains open() and close() functions.

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

46

Disk

inmy

outmy

The class to be used depends upon the purpose whether the write data or read data operation

is to be performed on the file. A file can be opened in two ways:

- using the constructor function of the class

- using the member function open() of the class Opening Files using

Constructor:

While using constructor for opening files, filename is used to initialize the file stream object.

This involves the following steps:

• Create a file stream object to manage the stream using the appropriate class. -

class ofstream for output stream creation - class ifstream for input stream

creation.

• Initialize the file object using desired file name.v Example:

opens a file named “inmyfile” for input. This creates infile as an ifstream object that

manages the input stream for reading data. Similarly,

opens a file named “outmyfile” for output. This create outfile as an ofstream object that

manages the output stream. The figure 5.3 illustrates the file stream working on two separate

files.

Output stream

Input stream

Fig 5.4 I/O File streams on separate files

ofstream outfile(“outmyfile”); //output only

Program

ifstream infile(“inmyfile”); //input only

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

47

Example: Creating files with constructor function

Opening Files using open()

• open() function can be used to open multiple files that uses the same stream

object.

• For processing many files sequentially, a single stream object can be created

and can be used to open each file in turn.

• General syntax:

#include <iostream.h> #include <fstream.h>

int main()

{

ofstream outfile(“RESULT”);

…

cin >>name; outfile <<name <<”\n”;

…

cin >>mark;

outfile <<mark <<”\n”;

outfile.close();

ifstream infile(“mark”); infile >>name; infile >>mark;

…

infile.close();

return 0;

}

File-stream-class-name stream-object-name; stream-object-name.open

(“filename”);

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

48

Example: for working with multiple files simultaneously:

//Creating files with open() function

#include <iostream.h>

#include<fstream.h>

int main()

{

ofstream fileout;

fileout.open(“file1”);

fileout<<”…\n”; ….

fileout.close();

fileout.open(“file2”);

fileout<<”….\n”;

...

fileout.close();

…

ifstream filein;

filein.open(“file1”);

cout<<”contents of file1 \n”;

while (filein)

{

filein.getline(arg1,arg2); cout<<arg1;

}

filein.close(); filein.open(“file2”);

cout<<”contents of file2”;

while(filein)

{

filein.getline(arg1,arg2); cout<<arg2;

}

filein.close(); return 0;

}

The Figure 5.5 illustrates the file streams working on multiple files concept. At a particular

time a stream can work on one file only. To work on the current file all the other files has to

be closed.

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

49

fileout

filein

Fig 5.5 File streams working on multiple files

Connect one file to fileout

Connect one file to filein

ERROR HANDLING

There are many problems encountered while dealing with files. Some of the commonly

occurring problems are as follows:

• Attempting to open a file that does not exist.

• Attempting to use the same file name that already exist.

• Attempting an invalid operation on file.

• Attempting to store the file where there is no disk space.

• Attempting to use an invalid file name.

• Attempting to perform an operation that is invalid under that file mode.

ios class:

• The class ios has member functions that can be used to read the status recorded in a

file stream.

• The file stream inherits a „stream-state‟ member from the class ios which records

information on the status of the currently used file.

• The stream state member uses bit fields to store the status of error conditions. Table

6.4 Error Handling Functions

file2

file1

Disk

Program

STUDY MATERIAL FOR BCA

OBJECT ORIENTED PROGRAMMING WITH C++

SEMESTER -II, ACADEMIC YEAR 2022-23

50

Function Return value and meaning

eof() If end of file is encountered during reading then return TRUE

else return FALSE.

fail() If an input or output operation has failed then return TRUE.

bad() Returns TRUE under the following conditions:

- an invalid operation is attempted

- any unrecoverable error has occurred.

good() Returns TRUE if error has not occurred and the system can

proceed to perform I/O operations.

Example:

* * *

{

…

ifstream myfile;

myfile.open(“XYZ”);

…

if myfile.eof() // checking end of file condition}

..

if myfile.bad() // checking for invalid operations

…

while (myfile.read(…)) // checking for invalid operations

	UNIT I
	A LOOK AT PROCEDURE ORIENTED PROGRAMMING
	Procedure Oriented Programming :-
	Characteristics of Procedure Oriented Programming:
	Object-Oriented Problem-Solving Approach
	OBJECT ORIENTED PROGRAMMING PARADIGM
	Sequential Operation
	BASIC CONCEPTS OF OBJECT-ORIENTED PROGRAMMING
	Classes
	Encapsulation
	Data Hiding / Information hiding
	Inheritance
	Types of Inheritance:
	o Multiple In
	Exception Handling
	Message Passing
	BENEFITS OF OBJECT ORIENTED PROGRAMMING
	APPLICATIONS OF OOP
	Table 1.1 Difference between Procedure Oriented programming: and OOP
	UNIT-II SPECIFYING A CLASS
	class class_name
	variable declarations; function declarations; public : variable declarations; function declarations; };
	Access Control in Classes
	DEFINING MEMBER FUNCTIONS
	Types of Member Functions
	Simple Member functions
	Static Member functions
	Const Member functions
	Inline functions
	Friend functions
	STATIC DATA MEMBERS AND STATIC MEMBERS FUNCTIONS
	Static Member Functions
	class_name :: function_name

	OBJECT AS FUNCTION ARGUMENTS
	FRIENDLY FUNCTIONS

	UNIT III
	CONSTRUCTORS AND DESTRUCTORS
	Types of Constructors
	Default Constructor
	Characteristics of Constructors
	PARAMETERIZED CONSTRUCTORS
	class Cube
	{
	}
	int main()
	Cube cb1(100); Cube cb2(200); Cube cb3(300); cout << cb1.side; cout << cb2.side; cout << cb3.side;
	MULTIPLE CONSTRUCTORS IN CLASS
	DESTRUCTORS
	Example: Calling Constructor and Destructor
	Syntax:
	OVERLOADING UNARY OPERATORS
	Postfix form

	OVERLOADING BINARY OPERATORS
	OVERLOADING BINARY OPERATORS USING FRIENDS
	Overloading the operators >> and << using friend function
	RULES FOR OPERATOR OVERLOADING
	TYPE CONVERSION
	Implicit conversions with classes
	(i) Basic Type to Class Type
	(ii) Class Type to Basic Type
	(i) One Class Type to Another Class Type

	UNIT IV
	INHERITANCE: DEFINING DERIVED CLASSES
	Super class.

	Basic Syntax of Inheritance
	Example of Inheritance
	SINGLE INHERITANCE
	Public Inheritance
	Protected Inheritance
	MULTILEVEL INHERITANCE
	MULTIPLE INHERITANCE
	Advantages of Inheritance

	UNIT V
	WORKING WITH FILES
	Output stream:
	Opening Files using open()
	ios class:

